Indices

Numbers are made up of two parts. The main part is called the

and the number in the top right corner is called the
When we count, we count in base The number 10 ⁰ is the
column. The number 10 ¹ is the column. The
number 10 ² is the column.
We can partition numbers using our number system. For example, 23,715
would be partitioned like this:
(2×) + (3 ×) + (7 ×) + (1 ×) + (5 ×
)
Computers use a different base called binary. This is base The
highest digit in binary is
When we look at numbers to the power of zero, they all equal
Looking at the number 8, $8^1 = $, $8^0 = $, $8^2 =$
=

We can have fractional indices such as $343^{\frac{1}{3}} =$. Another example is $64^{\frac{1}{2}} =$ ______ and $64^{\frac{1}{3}} =$ ______. So to recap, we have $9^{\frac{1}{2}} = 3$ because _____ ······· 9[°] = 1 because _____ 9^{-1} has the effect of giving us the reciprocal. The reciprocal of 9 is _____. $\left(\frac{3}{4}\right)^{-1} =$ = . Provided that numbers have ______, we can multiply two numbers together.

 $7^2 \times 7^3 = _$

You should notice that when we are multiplying indices together, we do it by

_____ the indexes.

So we can write, $7^{a} \times 7^{b} =$ ______.

When we divide one number by another involving indices, we ______.

So we can write, $7^{a} \div 7^{b} =$ ______.

Write the recap information under here.