Indices

Numbers are made up of two parts. The main part is called the
\qquad and the number in the top right corner is called the

When we count, we count in base \qquad . The number 10° is the
\qquad column. The number 10^{1} is the \qquad column. The number 10^{2} is the \qquad column.

We can partition numbers using our number system. For example, 23,715 would be partitioned like this:
(2x \qquad $)+(3 x$ \qquad $)+(7 \times$ \qquad $)+(1 \times$ \qquad $)+(5 \times$

Computers use a different base called binary. This is base \qquad . The
highest digit in binary is \qquad .

When we look at numbers to the power of zero, they all equal \qquad .

Looking at the number $8,8^{1}=$ \qquad $8^{0}=$ \qquad , $8^{2}=$
\qquad $=$ \qquad .

We can have fractional indices such as $343^{\frac{1}{3}}=$ \qquad .

Another example is $64^{\frac{1}{2}}=$ \qquad and $64^{\frac{1}{3}}=$ \qquad .

So to recap, we have $9^{\frac{1}{2}}=3$ because \qquad
$9^{0}=1$ because \qquad
9^{-1} has the effect of giving us the reciprocal. The reciprocal of 9 is \qquad .

$$
\left(\frac{3}{4}\right)^{-1}=\quad=
$$

Provided that numbers have \qquad we can
multiply two numbers together.
$7^{2} \times 7^{3}=$ \qquad $=$ \qquad .

You should notice that when we are multiplying indices together, we do it by
\qquad the indexes.

So we can write, $7^{a} \times 7^{b}=$ \qquad .

When we divide one number by another involving indices, we \qquad .

So we can write, $7^{a} \div 7^{b}=$ \qquad .

Write the recap information under here.

